醉漢走路
by Leonard Mlodinow, 曼羅迪諾
(*)(*)(*)(*)(*)(252)
哪些命運,你以為是必然,其實只是偶然? 哪些機會,你以為是偶然,其實都是必然? 事業能成功,投資能賺錢,一部電影會賣座,一本書會暢銷,有多少是出於運氣? 不管是人生之路,還是發生在你我周遭之事,全都像「醉漢走路」! 從學業到事業、到平時生活大小事,我們經常會碰到這樣的疑問: 為什麼兩篇差不多的作文,其中一篇的分數比較高? 為什麼比爾蓋茲能成功、史蒂芬金的小說會暢銷、布魯斯威利一炮而紅? 為什麼某款葡萄酒在A雜誌評鑑為五顆星,在B雜誌卻評為年度最差? 現實世界發生的許多事,都是隨機的,就像浮游在液體中的花粉微粒, 會不斷的讓一個接著一個的隨機事件推向東、推向西; 我們從校園到職場的人生歷程, 或是高爾夫球從第一洞到第十八洞的軌跡,股票市場的漲漲跌跌,都是如此。 各種出乎意外的事件遲早會發生,但終歸會到達某個位置── 這正是「醉漢走路」這個模型代表的涵義。 讀了《醉漢走路》,你會更明白隨機、機遇是怎麼一回事, 你也會重新思考「機會、命運、偶然、必然」的意義, 重新思索各種決策和結論,看穿表象、看清真相。 更重要的是,你也會知道如何提升成功的機率。 作者簡介 曼羅迪諾 Leonard Mlodinow   加州大學柏克萊分校物理博士,曾擔任電視影集「星鑑奇航記:銀河飛龍」、「百戰天龍」編劇之一,現在任教於加州理工學院。著有《歐幾里得之窗》、《費曼的彩虹》,並與霍金合著新版《時間簡史》。 譯者簡介 胡守仁   芝加哥大學數學博士,現任淡江大學數學系教授。譯有《毛起來說三角》、《希爾伯特的23個數學問題》、《連結》、《最ㄅㄧㄤˋ的數學公式》、《妙不可言的數學證明》、《數學家是怎麼思考的》、《醉漢走路》(以上為天下文化出版)、《打開魔術箱》、《拼圖拼字拼數學》(以上為遠流出版)等。

All Reviews

33 + 16 in other languages
月一刀月一刀 wrote a review
(*)(*)(*)(*)( )
持續努力,等待好運的到來
「醉漢走路」又名「隨機漫步」,展現為物理現象則是花粉微粒的「布朗運動」。這個看似微不足道的問題,卻因為愛因斯坦的一篇論文揭露其奧秘,開啟了量子理論的革命性思潮,自此,隨機性法則被視為比因果律更基本。影響所及,許多事物到底是必然(命運)還是偶然(機會),科學知識往往顛覆了我們的直覺。 閱讀之後,認識了「機率與統計」的發展史;更重要的是,明白了人類的大腦喜歡因果關係,卻難以想像隨機的世界,因此在尋找模式的本能下,經常會發生「誤把運氣當才華」的偏誤,倒果為因,用成就來定義能力。其實,成功是才能、努力及機遇的聯合產兒,有人光憑偏財運一次就中了頭彩,有人傾家蕩產屢屢投注卻是血本無歸。仔細研讀成功者的傳記,會發現通常難免有絕處逢生的經驗,成功往往屬於堅持到底者,放棄的人,永遠不知道自己離成功有多近。因此,若成功者說自己是運氣好,這可能不是謙詞,而是洞明世事的智慧之言。才能加努力不保證會成功;然而,可以操之在己的是:多一次嘗試,就多一次成功的機會。所以,成功者最重要的特質或許是:持續努力,等待好運的到來。成者為王敗者為寇,成功之後,世人就會歸因於你的才能和努力,其實或許你的勝出只是因為比競爭者好運,中肯而言,曰:天意如此。 複雜系統的互動經常沒有簡單的答案,懂一點「機率與統計」很有用,至少可以減低將隨機事件解釋為因果關係的偏誤。其中,「向平均數迴歸」就是一個很重要的基本概念。值得注意的是,統計學可以估算整個群體的機率分布情形,卻難以預測特定個體的命運。所以,「事後諸葛易,未卜先知難」是人間的常態,這說明了:其實隨機性事件到處都有。 綜上,隨機、無常是世間的常態,人類的大腦卻偏好因果論。從此觀點,佛家的「因、緣、果」已將隨機性整合在內,實在是理解現實世界最完整的模型,我想。
Kin YipKin Yip wrote a review
(*)(*)(*)(*)(*)
Spoiler Alert
This book certainly reminds me of Daniel Kahneman's "Thinking, Fast and Slow" and Nassim Nicholas Taleb's "The Black Swan". Actually, Kahneman's name was mentioned a lot (together with Amos Tversky) in this book and it seems that Kahneman and Tversky were the pioneers who taught us how much people didn't understand randomness. I think, availability bias (p.28/26th line), heuristics (p.174/5th line) and confirmation bias (p.189/24th line) that the author discusses in this book have also been discussed at least in Kahneman's book. Comparing this book with the above-mentioned books, this author here has discussed more in depth how to calculate the probability. At some point, I thought he's really teaching people how to calculate probability (which is probably difficult for most readers) and I've even attempted some calculations. But soon I've realized that this is not really the case as he soon turned to narrative and conceptual type of discussion. Interestingly, somebody (from ETH Zürich) has helped calculate the probability of a person with a positive mammogram actually having breast cancer (as described in the 1st paragraph of p.117) to be ~9.4%. Overall, it's a very interesting and educational book to read even though I've read something similar before. The author does try a little to show how to calculate probability that other books aimed for the general public usually don't try. It contains a lot of interesting history that I didn't know. Eg. people didn't write about probability calculations until the 16th century --- apparently first by Gerolamo Cardano, who died in 1576 and his "Games of Chance" was not published (as it was rejected by the publisher in his lifetime!) until 1663 --- "By then his methods of analysis had been reproduced and surpassed" (last sentence on p.59). Apparently, the ancient Greek seemingly knew nothing about probability and only liked those quarters of mathematics as perfect as geometry (p.26-28) --- which is another new point of view for me :-) In the "Index" (at the end of the book), they have listed pages "190-91" for "confirmation bias" on p.241. But actually it first appeared on the 24th line of p.189.
順流而行順流而行 wrote a review
(*)(*)(*)(*)(*)
提供不少社會上慣常看到的統計話術,像是民意調查、球員或基金經理人超越同行的表現率、疾病得病率等等隱含的謬誤,更多的當然就是我們以往認為八九不離十的統計結果,最後卻可能因為小小的隨機事件而翻盤。
Wuray20046Wuray20046 wrote a review
(*)(*)(*)(*)(*)
偶然和必然實在比我想法中還要難分,能分清偶然和必然是預測分析的首要工作。
簡志勳簡志勳 wrote a review
(*)(*)(*)(*)(*)
很好看的一本書 被我列入博客來購物車等特價XD 從古早時代的數學歷史講起,延伸到社會學跟人類心理學 隨機跟不確定性在我們的生活中無所不在 誠如它所說:人類的本性就是想要掌控環境 所以在很多地方我們會用結果論來看待這個世界 而忽略了隨機跟不確定性的影響 讓我用另一種角度來看事情 有種豁然開朗的感覺 最後幾章讓我覺得很勵志XD 真的很好看的一本書 深入淺出 非常推薦
Derek LoDerek Lo wrote a review
(*)(*)(*)(*)( )
I bought the chinese translation from a local store and read about 1/3 of it but finally decide to switch to the original version. I glad I made that decision. it's no doubt that reading the original text is much more articulate and more comprehensible. this little book was fun and covered the essential aspects of "chance" and "randomness". as i see, one thing the author differs from kahneman, which the author quoted quite a few times in this book, is that he believed, even randomness dominated the outcome of things more than any other things, it's still necessary to plan . this book is definitely more fun but it's quite clear to me that thinking fast and slow shall be rated a notch higher.
Account deletedAnonymous wrote a review
(*)(*)(*)(*)( )
有病誠不幸,無知沒藥醫
標題是取自於書中的一個案例。 作者大量引用了初等幾統及歷史案例來讓故事活潑有趣, 其目的是為了帶出最後一章,也是本書的重點:醉漢走路! 哪些是偶然,哪些又是必然? 礙於人腦的思考機制,時常做出最不合自身利益考量。 這就是作者要說的:人腦做了不少對事,但做了更多錯事。 先入為主及捷思法是不是害了我們做出錯誤推論 以至於我們時常分不清風險與不確定性的差別。 運氣也是一種實力,許多不可思議的奇事也是隨機樣本中的其中一個。 英雄不怕出身低,怕的是不知自己離成功有多近。。 我們無法掌控不確定性及機會,但我們能掌握的是常識的次數 作者講到最後對機遇反而沒有很明。 這本書給了我們一個重新思考的起點: 我們無法打敗自己的大腦, 但只要我們意識到隨機分配的存在,就是一個很好的開始。
audioreaderaudioreader wrote a review
(*)(*)(*)(*)(*)
One of my favourite non-fiction works. Mlodinow provides a very complete picture of important statistical phenomena, with an interesting historical note for each (who knew centuries-ago mathematicians could be so much fun?), easy examples to understand them, and most importantly, their consequences for explaining the way as humans we behave and the mistakes we constantly make without realizing it. I like this book because he very clearly explains what I've always known about many human pursuits but I was not able to put into words; that due to a lack of fundamental understanding those pursuits are flawed and sometimes serious mistakes are made. He also explains why when these constant mistakes are right under our nose we fail to recognize them. A must-read
JJSpEakingJJSpEaking wrote a review
(*)(*)(*)(*)(*)
絕對是我2011看過最棒的一本書!
凹腦袋凹腦袋 wrote a review
(*)(*)(*)(*)(*)
終於明白蒙提霍爾問題了! 在《決勝21點》這部電影中首次聽聞這個問題,完全不能理解的勝率為何高於不換,困惑啊!如今懸宕多年的問題終於得解,原來我取錯了樣本,真是高興。只是沒想到連艾狄胥等數學大家們也被這「換不換」的問題矇得暈頭。 看來,於生命長流中自然演化而成的大腦,果真不太適應機率問題。 咦!那麼可否依此反推:人類的大腦的確是在漫長的自然環境中演化而成,而非由全能全善者創造!?不過,巴斯卡定會舉手反對:風險太高,還是選擇相信有個上帝比較穩當! 或者這只能證明我與猴子與鯨魚有著共同的祖先?我畢竟未能證明每個人都跟我一樣。嗯!想來尼采兄會樂於我的同行!雖然,從上帝手上掙得的自主、自由是如此卑微渺小,我們仍舊樂得自high。 不過,奎特雷又要跳出來大喊:別自欺了!我們都是平均人不完美的副本。(這不是以統計學為柏拉圖的幾何 eidos 換上新裝嗎?)看看《隱藏的邏輯》吧,個體自以為的自由意志,常常已在不自覺間受群體的規律左右!社會物理學這門不老不新,先前常被種族主義者誤用的學科,或許已在數位、骨狗的現代、在大量數據與數位工具的支持下,綻放曙光! 或許,自由/決定、混沌/秩序、隨機/規律、chaos/cosmos......之間的關係,甚至不是孿生,而是正反相繫的同一現實的兩面。 最後,掙扎浮沉於大化洪流中的人們又該何去何從? 作者大約會回答:既然不可能知道分母是多少,那唯一可行的方案就是不斷嘗試,多為自己增加些分子,提高勝率。 這樣說來,人生不就像買樂透嗎? 既然如此,筆停於此。買樂透去先!